
26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 1/8

Mathematical Applications
Numerical Methods for Solving Non-linear Equations

Suppose you are trying to solve the equation:

Interval Bisection

Flowchart for Interval Bisection

sin(x) = 0.5x

Can you do this algebraically?

First change your equation into a function for which you wish to find the roots

f(x) = sin(x) − 0.5x

and solve

f(x) = 0

Plot the function  in excelf(x)

Define the function  in VBAf

Set up a start value and an end value for  in excelx

Draw a table of  against  in Excel from start value to end valuex f(x)

Plot the graph

Now all we need to do to find out the root is to keep changing the start_value and end_value until we
are as close in accuracy as we wish to be

Set the start_value to just before the root and set the end_value to just after the root. The graph should
automatically redraw

Repeat process until to are happy you are close enough to the root and you have found the solution to
the equation

Write a function, using the interval bisection method, which takes a start_value, an end_value and the
name of a function as arguments and returns a root of the function between the start and end value



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 2/8

Inputs
x1
x2
func

Are func(x1) 
and func(x2) 
the same sign

Exit

xm=(x1+x2)/2
Are func(x1) 
and func(xm) 
the same sign

x1=xm
x2=x2

x2=xm
x1=x1

is (x2-x1) < 1e-9

Yes

Yes

Yes

No

No

No

Improving your code

  fn_name = CVErr(1)


  Exit Function


Newton Rhapson

It is a good idea to check if a root does lie between the two initial values at all. If it does not then you
can use CVErr to return an error code like so

You will also need to use the Sgn  function to test the sign of the values calculated. Sgn  returns
-1,0 or 1 depending on the values of its argument.

If you wish to jump out of the function for some reason (most likely error handling) then you can use the
following line of code

The Newton Rhapson method has the advantage of being much faster as it uses the gradient of the
graph to find the next approximation

The method is as follows:

Start by guessing where the root is: this guess is x0

Find the next estimate with the formula:

= − , i = 0, 1, 2, . . . ,xi+1 xi
F( )xi

( )F ′ xi



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 3/8

Improving your code

Mathematical Methods for solving Differential Equations

Euler Method

Stop when | − | ≈ 0xn+1 xn

You can see from the graph below how each tangent gets you closer and closer to the root

Write a function which takes an initial estimate, the name of a function and the name of the derivative of
the function and returns the root found by Newton Rhapson.

Can you adapt the code so that it can handle situation where ?(x) ≈ 0F ′

Can you adapt your code so it can handle getting stuck in an infinite loop?

Can you adapt your code to be sure it has found the smallest root as opposed to another root?

How might you change this function so it could handle not being sent the derivative of the function?

In this chapter we will consider different methods of solving differential equations. By considering an
equation to which we can calculate the answer exactly (the basic compound interest equation) we will
be able to show the different levels of accuracy of the different methods.

So we are going to try and solve = ky
dy

dx

The equation  is basically saying that the bigger  is, the greater the rate at which it increases= ky
dy

dx
y

A very simple way of trying to solve this equation is:

take our starting value of : y y0

calculate  at this point in time  and thendy

dx
t0



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 4/8

Rung Kutta

Quadratures

Introduction

add our value of  at  to dy

dx
t0 y0

to give us the value of  at the next point in time i.e. y y1

If  is anything other than  then we must adjust by this also. So our formula is:−x1 x0 1

= + ( − ) ×yn+1 yn xn+1 xn ( )dy

dx n

For  and : 

Calculate  using step sizes of:5, 1, 0.1 and 0.01

= 10y0 k = 0.4
y5

Compare your answers with the analytical answer y = ×y0 ekx

The problem with the Euler method is that as we move towards the end of the interval we are still using
the derivative from the start of the interval and so we are losing accuracy

The solution to the loss of accuracy is to take the derivative at the end of the interval and then use this
to recalculate the step change over the interval. Clearly this changes the vaue at the end of the interval
which changes the derivative at the end of the interval. Much algebra ensues and the resulting 4th
order Runge-Kutta equations, for the a problem defined as: ,  are as follows:= f(x, y)ẏ y( ) =x0 y0

= + ( + 2 + 2 + )yn+1 yn
h
6
k1 k2 k3 k4

, for choice of interval = + hxn+1 xn h

Where:

= f( , )k1 tn yn

= f( + , + )k2 tn
h
2
yn

h
2
k1

= f( + , + )k3 tn
h
2
yn

h
2
k2

= f( + h, + h )k4 tn yn k3

Now repeat the compound interest exercise from above using the Runge-Kutta method

For  and : 

Calculate  using step sizes ( ) of:5, 1, 0.1 and 0.01

= 10y0 k = 0.4
y5 h

Compare your answers with the analytical answer  and with the answers under the Euler
method

y = ×y0 ekx

A quadrature is just a name we use to describe methods of numerical integration

In this chapter we will look at some simple methods such as the trapezium rule, which you will already
be familiar with and then we will consider some more sophisticated developments, such as Simpson's
and Boole's rule, which interpolate function points with polynomials of increasing degree

Finally we will look at Gaussian quadratures where the assumption of evenly spaced abscissa points is
dropped and a more general form of quadrature is developed which can produce remarkably accurate



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 5/8

Very basic quadrature methods

The Trapezium Rule

results with relatively little calculation

The most basic form of numerical integration is called the left point rule: In this case we simply divide
the function into intervals of width  and then add up the area of the rectangles width:  and
height: , where  is the value of  at the left of the interval

Δx Δx
f( )xi xi x

This gives: f(x)dx ≈ Δx × (f( ) + f( )+. . . +f( ))∫ b

a
x0 x1 xn−1

where ,  and the s are evenly spaced across the interval.a = x0 b = xn xi

The right point rule and the mid-point rule follow by analogy

Clearly these methods are very primitive and it is easy to improve on them

The trapezium rule represents the first level of sophistication in the numerical calculation of integrals

consider the problem of how to calculate the area under the curve:  between  and y = × sinxe−x 0 π

The following graph shows how we could use a series of trapeziums to estimate this integral

We can easily see that the area under the trapeziums reduces to:

A = × (f(0) + 2f( ) + 2f( ) + 2f( ) + f(π))π
8

π
4

π
2

3π
4

So more generally the trapezium rule is given by:



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 6/8

Simpson's Rule

Simpson's three eighths Rule

f(x)dx ≈ × (f( ) + 2f( ) + 2f( )+. . . +2f( ) + f( ))∫ b

a
Δx

2
x0 x1 x2 xn−1 xn

Write a VBA routine to approximate the integral of a general function between abscissas  and  with
any given number of intervals using the trapezium rule

a b

Approximate the area under  between  and  using 4, 12 and 120 intervalsy = × sinxe−x 0 π

Suppose instead of fitting straight line segments to our function we attempt to find a better fit by fitting
quadratic segments

Look at the same function below (grey) with two black quadratics fitted to the first three and last three
calculated function points

By considering a function  on the interval  and using abscissa points ,  and , calculate
the quadratic which will interpolate the three points

f [−θ, θ] −θ 0 θ

Using basic calculus, calculate the area under this quadratic on the interval  as a function of , 
,  and 

[−θ, θ] θ
f(−θ) f(0) f(θ)

This leads us to Simpson's Rule which is stated generally as:

f(x)dx ≈ × (f( ) + 4f( ) + 2f( ) + 4f( )+. . . +2f( ) + 4f( ) + f( ))∫ b

a
Δx

3
x0 x1 x2 x3 xn−2 xn−1 xn

Write a VBA routine to approximate the integral of a general function between abscissas  and  with
any given number of intervals using Simpson's Rule

a b

Approximate the area under  between  and  using 4, 12 and 120 intervals using
Simpson's Rule (2,6 and 60 quadratic segments)

y = × sinxe−x 0 π



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 7/8

Boole's Rule

Programming Extensions

The next level is to fit cubic segments

Look at the same function again (grey) with the red cubic fitted to four calculated function points

The principles are exactly the same but the algebra is a bit more complicated, so Simpson's 3/8ths Rule
over a  interval can be expressed as:3Δx

f(x)dx ≈ × (f( ) + 3f( ) + 3f( ) + f( ))∫ b

a
3Δx

8
x0 x1 x2 x3

Write a single VBA routine to approximate the integral of a general function between abscissas  and 
with any given number of intervals and allowing the user to choose between the methods given so far

a b

Approximate the area under  between  and  using 3, 6, 12 and 120 intervals using
Simpson's 3/8ths Rule

y = × sinxe−x 0 π

The next level is to fit quartic segments

This time the interpolating function is a quartic

The principles are again the same, so Boole's Rule over  interval can be expressed as:4Δx

f(x)dx ≈ × (14f( ) + 64f( ) + 24f( ) + 64f( ) + 14f( ))∫ b

a
Δx
45

x0 x1 x2 x3 x4

Extend your VBA routine to include Boole's Rule

Approximate the area under  between  and  using 4, 12 and 120 intervals using
Boole's Rule

y = × sinxe−x 0 π

There are a number of things you should now do to tidy up your routine

Ensure the routine checks for an appropriate number of intervals for each integration method



26/09/2021, 21:39 VBA Primer

file:///D:/Documents/dah-cass/VBA/VBA Chapter 2 (print xx).html 8/8

Monte Carlo Methods

Example 1

Example 2

Example 3

You could splice different methods where  does not fitn

You could include an option to leave out  and let the routine try different values until some
convergence criterion is reached

n

A Monte Carlo method is any method which uses thousands of randomly generated scenarios to
calculate approximate probabilities or expected values

This is very useful in finance as many variables are unknown and have to be simulated with random
variables.

The relationships are also often very complicated and so closed form solutions are often not feasible.

The basic method is to model your random variables in VBA, then run the model thousands of times
and then the probability of the 'positive' event is approximately the number of 'positive' results divided
by the number of trials

Draw a unit circle inside a square and use a Monte Carlo method to approximate the value of π

On a chess board a knight starts in square 'A1'. It then moves randomly 20 times. What is the
probability that it finishes in square 'A1'

There are 10 red balls in bag 1, 10 green balls in bag 2 and 10 blue balls in bag 3. If you take one ball
from bag 1 and put in it bag 2 and then take 1 ball from bag 2 and put it in bag 3 and then take one ball
from bag 3 and put it in bag 1. Then you repeat this task 5 times, what is the probability that the last ball
(the 15th) is blue


